-
A. k
-
B. 0
-
C. π
-
D. π
Explanation
In vector algebra, the cross product of the standard unit vectors follows the right-hand rule:
iΓj=k
jΓk=i
kΓi=j
-
A. (1/β64) Γ (8i + 2j + 2k)
-
B. (1/β68) Γ (8i + 2j + 2k)
-
C. (1/β72) Γ (8i + 2j + 2k)
-
D. (1/β74) Γ (8i + 2j + 2k)
Explanation
To find the unit vector of A = 8i + 2j + 2k, follow these steps:
1. Find the magnitude of vector A:
Β Β β(8Β² + 2Β² + 2Β²) = β(64 + 4 + 4) = β72
2. Divide each component by the magnitude:
Β Β Unit vector Γ’ = (1/β72) Γ (8i + 2j + 2k)
β
Correct: 0 |
β Wrong: 0 |
π Total Attempted: 0
iamge