Radical Expression | MCQs
-
A. None of these
-
B. Conjugate
-
C. Polynomial
-
D. Surd
Explanation
A surd is an irrational number or expression containing a square root, cube root, etc., that can't be simplified to a rational number.
Example: √2, ³√5 are surds because they involve radical signs.
-
A. None of these
-
B. 1 - 6
-
C. 5 - 2√6
-
D. 1 - 2√6
Explanation
To expand the expression:
(√3 - √2)²
= (√3)² - 2(√3)(√2) + (√2)²
= 3 - 2√6 + 2
= 5 - 2√6
-
A. 2√2 - √2
-
B. 2√2
-
C. √2
-
D. 3√2
Explanation
The expression √8-√2 simplifies to √2.
-
A. None of these
-
B. 7√5
-
C. 5√36
-
D. 7√3
Explanation
Let's simplify the expression:
5√3 + √12
First, simplify √12:
√12 = √(4 × 3) = √4 × √3 = 2√3
Now add:
5√3 + 2√3 = 7√3
-
A. None of these
-
B. 6
-
C. 5
-
D. 4
Explanation
The fourth root of 256 is:
⁴√256 = ⁴√(4^4) = 4
-
A. None of these
-
B. 32
-
C. 36
-
D. 24
Explanation
Calculate the cube root of 32768.
³√32768 = ³√32³ = 32
-
A. Exponent
-
B. Radicand
-
C. None of these
-
D. Index
Explanation
In the expression x√a, 'a' is called the radicand.
The radical symbol (✓) indicates a root, and the number or expression inside it (in this case, 'a') is the radicand.
-
A. 6√12
-
B. 6√3
-
C. None of these
-
D. 10√3
Explanation
To simplify the expression:
2√3 + 4√12
First, simplify √12:
√12 = √(4 × 3) = √4 × √3 = 2√3
Now, substitute:
2√3 + 4(2√3) = 2√3 + 8√3 = 10√3
Explanation


-
A. 4ab
-
B. 32ab
-
C. None of these
-
D. 8ab
Explanation
Let's simplify the expression:
∜256a⁴b⁴ = ∜(4⁴ × a⁴ × b⁴)
= ∜(4a × 4a × 4a × 4a × b × b × b × b)
= 4ab
✅ Correct: 0 |
❌ Wrong: 0 |
📊 Total Attempted: 0
iamge