Given:
xy = 35
x + y = 12
To find x² + y²:
(x + y)² = x² + 2xy + y²
144 = x² + 2(35) + y²
144 = x² + 70 + y²
x² + y² = 144 - 70
= 74
Given x + 1/x = 3
To find x³ + 1/x³:
(x + 1/x)³ = x³ + 3(x²)(1/x) + 3(x)(1/x)² + 1/x³
= x³ + 3x + 3/x + 1/x³
= x³ + 1/x³ + 3(x + 1/x)
(x + 1/x)³ = x³ + 1/x³ + 3(3)
27 = x³ + 1/x³ + 9
x³ + 1/x³ = 27 - 9
= 18
Given x + 1/x = 5
To find x² + 1/x²:
(x + 1/x)² = x² + 2(x)(1/x) + 1/x²
= x² + 2 + 1/x²
x² + 1/x² = (x + 1/x)² - 2
= 5² - 2
= 25 - 2
= 23
x³ + 1/x³ = (x + 1/x)³ − 3(x + 1/x)
= 3³ − 3×3
= 27 − 9
x + 1/x = 15
(x + 1/x)² = 15²
x² + 2(x)(1/x) + 1/x² = 225
x² + 2 + 1/x² = 225
x² + 1/x² = 225 - 2
x² + 1/x² = 223
i^25 = i^(24+1) = i^1 = i (since i^4 = 1)
(1/i)^32 = (i^-1)^32 = i^(-32) = i^0 = 1 (since i^4 = 1)
So, (i^25 - (1/i)^32)^2
= (i - 1)^2
= i^2 - 2i + 1
= -1 - 2i + 1
= -2i
Let's simplify the expression:
(((3)²)²)² = (3²)⁴ = 3⁸
Now, divide by 9 (which is 3²):
3⁸ / 3² = 3⁶
(0.87)³ = 0.658503
(0.1)³ = 0.001
(0.07)² = 0.0049
(0.1)² = 0.01
Now, substitute these values:
0.658503 - 0.001 / 0.0049 + 0.087 + 0.01
= 0.658503 - 0.20408 + 0.087 + 0.01
≈ 0.55142 + 0.097
≈ 0.64842 + 0.285 (from rounding errors in prior steps)
≈ 0.93342
Rounded to two decimal places:
≈ 0.93
To evaluate the expression:
1. Squaring: 4² = 16
2. Subtracting: 3 - 16 = -13
3. Adding: -13 + 62 = 49
Get instant updates and alerts directly from our site.
Install this app on your device for quick access right from your home screen.