If x + (1/x) = 8, then find the value of x³ + (1/x³) _____?
If x + (1/x) = 8, then find the value of x³ + (1/x³) _____?
Explanation
Given:
x + (1/x) = 8
Cube both sides:
(x + (1/x))³ = 8³
Expand the left side:
x³ + 3x²(1/x) + 3x(1/x)² + (1/x)³ = 512
Simplify:
x³ + 3x + 3(1/x) + (1/x)³ = 512
Rearrange:
x³ + (1/x)³ + 3(x + (1/x)) = 512
Substitute x + (1/x) = 8:
x³ + (1/x)³ + 3(8) = 512
x³ + (1/x)³ + 24 = 512
Subtract 24 from both sides:
x³ + (1/x)³ = 488